International Journal on Information Sciences and Computing, Vol.4, No.1, January/July 2010 47

HIGH SPEED PIPELINED ASIP PROCESSOR FOR ECC USING FPGA TECHNOLOGY

MuthuKumar .B, Jeevananthan .S’
'Research scholar , Sathyabama University, INDIA
“Asst. Professor, Department of Electrical and Electronics Engineering, Pondicherry Engineering College, INDIA
E-mail : 'anbmuthusba@yahoo.co.in

Abstract

In recent years, Elliptic curve cryptography has gained widespread exposure and acceptance and has already been included in
many security standards. Engineering of ECC is a complex, interdisciplinary research field encompassing such as Mathematics,
Computer Science and Electrical Engineering. ASIP-based implementations constitute a key trend in SoC design enabling
optimal tradeoffs between performance and flexibility. This paper details the design of a High speed pipelined ASIP processor for
ECC using FPGAtechnology. Aseven stage pipeline has been applied to the design, and pipeline stalls are avoided via instruction
reordering and data forwarding. Three complex instructions are introduced to reduce the latency by reducing the overall number of
instructions.The architecture was programmed in Verilog and synthesized to Xilinx Vertex Il Pro devices .Simulation was done
with Modelsim XE 6.1e, VLS| simulation software from Mentor Graphics Corporation especially for Xilinx devices.
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I. INTRODUCTION

An application-specific instruction-set processor
(ASIP) is a component used in system-on-a-chip (SOC)
design. The instruction set of an ASIP is tailored to gain a
specific application. This specialization of the core allow
for a tradeoff between the flexibility of a general purpose
CPU and the performance of an ASIC. Application Specific
Instruction Set Processor (ASIP) technology is a new
digital signal processing system design approach
developed from ASIC and DSP technology [1]. The key
feature of ASIP technology is the development of a specific
instruction set and architecture for a particular application
or for a set of applications [6, 5]. The digital signal
processing systems using ASIP approach are very
suitable for them to be implemented in FPGAs, due to
FPGA's reconfigurable ability, large scale circuit density
and ample in-chip functional resources such as RAMs,
arithmetic cells, and clock management cells, etc.
Particularly, it's rather easy to implement multiple ASIP
processing elements (PE) into a single FPGA chip, thus
high parallelism and high processing speed can be
realized with parallel process-unit array architecture. In
fact, the concept of the application-specific instruction set
processor (ASIP) [4] constitutes the appropriate solution
for fulfilling the flexibility and performance constraints of
emerging and future applications as shownin [5] and [6].

Elliptic Curve Cryptography (ECC)[16] is one of the
more advantageous type of public key cryptography with
the shorter key size for the same level of security provided
by the other types of public key cryptography. For
example, ECC requires only 160 bits where RSA needs
1024 bits with the same level of security.

In ECC, the fast or bit-parallel algorithms and
architectures over finite fields has been performed due to

the increasing use of cryptographic techniques in
computer and communication network systems. The
elliptic curve cryptosystems also have the advantage of
their high cryptographic strength relative to the key size
and, thus, they are especially attractive in applications
such as the financial industry, smart cards, and wireless
areas where power and bandwidth are limited.

The computationally intensive operation needed for
ECC[3] was implemented in hardware using FPGA
technology has numerous advantages. The optimization
goal is to reduce the latency of a point multiplication in
terms of the number of required cycles. Some of the
design techniques used in modern high performance
processors were incorporated into the design of an
application-specific instruction set processor (ASIP) for
ECC. Pipelining was applied to the design, giving
improved clock frequencies. Data forwarding and
instruction reordering were incorporated to exploit the
inherent parallelism of the Lopez and Dahab point
multiplication algorithm, reducing pipeline stalls.

II. ELLIPTIC CURVE CRYPTOGRAPHY

Elliptic curve cryptography [ECC] is a public-key
cryptosystem just like RSA. In this type of cryptography,
every user has a public and a private key. Public key is
used for encryption/signature verification. Private key is
used for decryption/signature generation.

Recipient’s Recipient’s
Public Key Prvate Key
L - l
Plain text Cipher text | ) Plain text
Sender Eneryption Decryption Recipient

Fig. 1. Public Key Encryption/Decryption Scheme
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In Figure1 shows the communication process of both
encryption and decryption. The sender sends the plain text
with the help of public key the secret data to be converted
into cipher text. The reverse process to be performed on
the receiver end.The main reason for choosing ECC is its
shorterkey size and itis faster than RSA.

A. Discrete Logarithm Problem

The Security of ECC depends on the difficulty of
Elliptic Curve Discrete Logarithm [6] Problem. Let Pand Q
be the two points on an elliptic curve such that Q=k.P
Where Q is the output point, P is the Input point, k is a
Scalar .Given P and Q, it is computationally infeasible to
obtain k, if k is sufficiently large. k is the discrete logarithm
of Q to the base P. Hence the main operation involved in
ECC is point multiplication. i.e. multiplication of a scalar k
with any point P on the curve to obtain another point Q on
the curve.

B .Point Multiplication

In point multiplication a point P on the elliptic curve is
multiplies with a scalar k using elliptic curve equation to
obtain another point Q on the same elliptic curve. Q=k.P
Point multiplication is achieved by two basic elliptic curve
operations. Point addition, adding two points P1 and P2 to
obtain another point, P3 =P1+P2. Point doubling, adding a
point P toitself to obtain another point R=2P.

In Fig2 shows the operation of the scalar
multiplication. The point addition and point multiplication to
be performed. Consider the p1 and p2 points; get the p4
pointin the curve by performed the operation pointadding.

Example:

Let P be a point on an elliptic curve. Letk be a scalar
that is multiplied with the point P to obtain another point Q
onthecurve. i.e.tofind Q=k.P.If k=23 then kP=23.P=
2(2(2(2P)+P) +P) +P.

Thus point multiplication uses point addition and
point doubling repeatedly to find the result. The above
method is called 'double and add' method for point
multiplication.

lll. ELLIPTIC CURVES

An elliptic curve over a field K is a nonsingular cubic
curve intwo variables, f(x,y) =0with a rational point (which
may be a point at infinity). The field Kis usually taken to
be the complex numbers, reals, rationals, algebraic
extensions of rationals, p-adic numbers, or a finite field.

An elliptic curve is a plane curve defined by an equation of
thefoom y=X3+ax+b

Ps3

Pa=pit D,

Fig. 2. Elliptic Curve

Operations over the real numbers are slow and
inaccurate due to round-off error.  Cryptographic
operations need to be faster and accurate. To make
operations on elliptic curve accurate and more efficient,
the curve cryptography is defined over two finite fields.
Prime field F,and Binary field F,"

A.EConPrimefield F,

The equation of the elliptic curve on a prime field F, is
y* mod p = x*+ax+b mod p, where 4a’+27b* mod p # 0.
Here the elements of the finite field are integers between 0
and p-1. All the operations such as addition, subtraction,
division, multiplication involves integers between 0 and p-
1. The prime number p is chosen such that there is finitely
large of points on the elliptic curve to make the
cryptosystem secure.

B. ECon Binary field F,"

The equation of the elliptic curve on a binary field F,"
is y*+xy = x’+ax"+b, Where b # 0. Here the elements of
the finite field are integers of length at most m bits. These
numbers can be considered as a binary polynomial of
degree m-1. Inbinary polynomial the coefficients can only
be 0 or 1. All the operation such as addition, subtraction,
division, multiplication involves polynomial of degree m-1
orlesser. The mis chosen such that there is finitely large
number of points on the elliptic curve to make the
cryptosystem secure. SEC specifies curves with m
ranging between 113-571 bits.

Here, we are choosing the binary field for
cryptographic operations with the 163 bits i.e. m=163 that
is between 113-571 bits according to the SEC.
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IV. EC OPERATIONS ON AFFINE COORDINATE
Let P = (x,,y, )e £ .and
P, =(x,.y,)e E, then summing the two points

is P+P, =P, =(x,,y,)e E, where

Point addition:
yi+p2 Y yi+ V2
Xy=| =— T === +x,+x,ta, V=
i xXt+xz/ X1+ x2 - ’

A
vi+ y2 .
(' | Ga+x3)+ x, +y, ,P? P,

Xi4Xx2. )

Point doubling:
2 !
Xy='% + }_ sPi=Py

X,

; y
e [‘\'1 + '\_' ] (x;)+x, ,P1=Py
1

Hence, when P, = P, we have the point-doubling
operation (DBL), and when P, # P, we have the point-
adding operation (ADD). These operations in turn
constitute the crux of any ECC-based algorithm, known as
point multiplication or scalar multiplication.

V. EC OPERATIONS ON PROJECTIVE COORDINATE

Due to the computational expense of inversion
compared to multiplication, several projective coordinate
methods have been proposed, which use fractional field
arithmetic to defer the inversion operation until the end of
the point multiplication.

Here the point (x, y, z) in projective coordinate
corresponds to the point (x/z, y/z’) in affine coordinate.
For point multiplication, convert the point (x, y) in affine
coordinate to (x, y, 1) in projective coordinate. After
multiplication the result (x, y, z) is converted back to the
affine coordinate as (x/z, y/z’) where z#0. Ifz=0, thenthe
pointis considered as the point atinfinity..

VI. POINT MULTIPLICATION IN PROJECTIVE
COORDINATES

In this paper, the high-performance, generic
projective-coordinate algorithm proposed by Lopez and
Dahab is used, which is an efficient implementation of
Montgomery's method for computing kP [9]. No
precomputations or special field/curve properties are
required.

In the projective coordinate version of the formulas,
the x-coordinate of P, is represented by X/Z , for i e

{1,2,3}; Point doubling and Point addition are determined
by the following equations. In shownin the Fig.3 and Fig. 4
respectively doubling architecture and addition
architecture . The flow chart for Lopez — Dahab Point
multiplication algorithm is shown in the Fig5.

Point doubling:
x2P)= X! +b.Z}
22P)=Z} X}

Point addition:
Z,=(X,Z,+X,2,)

Xy=xZs+ (Xt-zz )(XZ'ZI )

a1
Mux 3
© ——
*x3
i Mwx —
Ly

Fig. 3. Doubling Architecture
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Fig. 4. Addition Architecture
Lopez-Dahab Point Multiplication
Algorithm
Input: An integer A>=0 and a base
point P = (x,v)e E .Output: Q = kP
If £ =0o0r x = 0then output (0, 0) and stop.
Set k<« (k,_k,_,..k,)Set X, «x, Z <1,
X, x'+b,Z, «x*.
For j from /-2 downto 0 do

If !.'f. =1then
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ADD(X,,Z,,X,,Z,),DBI( X,,Z,)
Else ADD(X,,Z,,X,,Z,),DBL(X,,Z,)
Return (Q=Proj2Aff (X,,Z,,X,,Z,))

INPUT x and y

!

| Calculate X, Z,, X; and Z;

Y

forj<=1-2to0

ADD(X,.Z,.X,.Z,)
,DBL(X,.7,)

y
ADD(X 1 Zos K Z)s
DBL(X,,7,)

| |

Convert projective to affine coordinates

STOWP

Fig. 5. Flow chart for Performing Point multiplication in
Projective Coordinates

VII. PIPELINED ASIP FOR ECC

Complex instruction set computers (CISCs) reduces
the number of instructions, and consequently the overall
latency, by performing multiple tasks in a single
instruction. Complex instructions could be used to reduce
latency in the design of an ASIP for ECC[1],[10]. Three
new instructions were introduced.  Considering the
projective-coordinate formula for point addition, an
obvious instruction to combine operations is a multiply-
and-accumulate instruction (MULAD), which will save two
instruction executions.

Also, rewriting the projective-coordinate formula for
pointdoubling, we have

x@P)=(x,.X,Y +b(Z.X,)
zQP)=(z.X,Y

So, a multiply-and-square operation (MULSQ) would
be beneficial, saving three instruction executions. The
architecture for point multiplier is given in Fig. 6.

MUL GFiZ® 7 | MUL GFI2* | | | MUL GF{2®) | 2
| sowariri | | seuarz®) | Ll | sQu GFl2* |
XORs [ xoms | [ xoms |
Poiu Addition Poirnd Doubile
XORs sQu GFI2* |
[
Conwn ey

POINT MULTIPLIER GF2™!

Fig. 6. Architecture for Point Multiplier

Based on the Montgomery point multiplication
algorithm [11], the point multiplier is composed of point
adder, point doublers, coordinates converter, squarer and
XORs. We use two Galois field multipliers[12], one Galois
field squarer and XORs to implement point adder. Point
doublers is composed of two Galois field squarer's, one
Galois field multiplier and XORs. The coordinate's
converter is more complicated than point adder and point
doublers. It consists of two Galois field multipliers, one
Galois field squarer, one Galois field inverter and XORs.
The addition unit in Galois field is straightforward to
implement over binary field. It can be designed using an
array of XOR gates.

The Itoh—Tsuijii inversion algorithm is based on
Fermat's little theorem and is used to compute the
inversion at the end of the point multiplication. The
algorithm uses addition chains to reduce the required
number of multiplications, but it contains exponentiations
that must be performed through repeated squaring
operations—as many as 64 repeated squaring operations
for the field. The relatively low latencies can be achieved
using this algorithm if repeated squaring can be performed
efficiently. Hence, a third application-specific instruction
will be used to perform repeated squaring (RESQR) in
order to accelerate the ltoh—Tsujii inversion algorithm.

Using these instructions, a combined algorithm to
perform point doubling and point addition can be
developed, which has only nine arithmetic instructions,
shown in new combined algorithm to perform DBL and
ADD.

Fig. 7. Architecture for Pipelined ASIP Data path
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New Combined Algorithm to Perform DBL and ADD

The combined algorithm to point addition and point
doubling is given by the following instructions.

Input: x- coordinates X, /Z for P, and X,/Z,
for P, : the curve parameter b;
x, the x - coordinate of the base point P .
Output: x - coordinates X,/Z, for B +P, and
X, 17, for 2P,
T « MUL(X,.Z,)
T(2)« MULAD(X,.Z,)
Z, < RESO(T,)
T, « MULSQ(Z,.Z,)
Z(2)e MULSQ(X,,Z,)
T « MUL(T,,T,)
X, « MULAD(Z,,x)
X, « MULSQ(X,, X,)
X, « MULAD(T ,.b)
To maintain high-throughput performance, high clock
frequencies are required and one instruction/cycle or more

is desirable. Therefore, the data path must be pipelined.
The pipelined data path is shown in Fig.7.

Fig 7 shows the data path of the pipelined application
specific instruction set processor (ASIP), which includes
the acceleration technique data forwarding, a sub-
pipelined multiplier and a register file that performs reads
and writes independently and concurrently. As the
multiplier is sub-pipelined in to four stages, the data path
contains atotal of seven pipeline stages: a read stage, four
multiplication stages (MUL, MULAD, MULSQ and RESQ),
the SQR/ADD stage and a write stage. Therefore, the
given data path uses seven stage pipelining to improve the
clock frequency.

SQR/ADD Block

The extra functionality required for the new
instructions MULAD, MULSQ, and RESQ is provided by
the SQR/ADD block [14],[15], which is appended to the
multiplier outputas shownin Fig.7.

A block diagram showing the functionality of the
SQR/ADD block is shown in Fig. 8; note that the flip-flops
are the pipeline flip-flops placed after the SQR/ADD block
in the data path diagram shown in Fig.7. Selection 0 on the

MUX shown in Fig.8 sets the data path to perform a
standard multiplication over.

Selection 1 sets the data path to perform MULSQ.
Selection 2 sets the data path to perform MULAD.
Selection 3 sets the data path to perform RESQ; note that
RESQ can be performed after any other operation, e.g.,
MULAD-RESQis a valid instruction sequence.

— 0
S TR

o I e

Fig. 8. SQR/ADD Block

Inversion by square and multiply
Input: Field element a
Output: b ? a’

b« a;

fori1=1tom-2do
b« b>*a:
b« b:

The primary advantage to this inversion method is the
fact that it does not require hardware dedicated
specifically to inversion. The field multiplier can be used to
perform all required field operations.

Table 1. Synthesis report for different bit sizes
Affine Coordinates

Requirements | m=4 | m=8 m=12 m=I8§

No. of Slices 11 318 808 1844
No. o[ 4 I/P 20 558 1418 3232
LUTs

No. of 10s 17 33 49 73
No. of Bonded 17 33 49 73
[OBs |

No. of OB 8 16 24 36
Flipflops

No. of GCLKs 1 | 1 1
Time (ns) 3.506 | 27.222 45991  77.480
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Table 2. Synthesis report for different bit sizes in
Projective Coordinates

Table 3. Device Comparison for Proposed ASIP:

By using the above inversion process, the output
point which is obtained in projective coordinates is
converted back to affine coordinates.

Vill. FPGA IMPLEMENTATION

The architecture has been programmed in Verilog
and synthesized to Xilinx Virtex Il Pro FPGA devices. Xilinx
ISE 8.2i is an Integrated Software Environment tool from
Xilinx Inc. for complete project implementation with Xilinx
specific devices is used in this project for synthesis
purpose. Simulation is done with ModelSim XE Il 6.1e,
VLS| simulation software from Mentor Graphics
Corporation specifically for Xilinx devices.

In this paper, the Lopez-Dahab Point multiplication
algorithm and new combined algorithm to perform adding
and doubling have been programmed in Verilog within the
same module and simulated by using Modelsim XE Il
6.1e.The simulated codings are then synthesized in Virtex
Il Pro device using Xilinx ISE 8.2i.

IX. COMPARISON BETWEEN AFFINE AND
PROJECTIVE COORDINATES

When comparing the area required and time
consumption for performing point multiplication in
projective coordinates and affine coordinates which have
shown in Table 1 and Table 2 respectively, the time
consumption in the projective coordinates is considerably
reduced with the increase in the required area.

The comparison between the affine and projective
coordinates according to the time that it has been
consumed and the area required to perform the point
multiplication are tabulated in table 3.In figure 9 and Figure
10 shows the graph projective coordinates according to
the time that it has been consumed and the area required
to perform the point multiplication.

Requirements m=4 | m=8 m=12 | m=18 Field Reduction Polynomial
No.ofSlices 27 | 153 | 481 | 1064 GF(2'™) F(x)=x""1 x"+ x*1 x” +1
i]t)l,.r(il 4 /P 49 273 851 1873 GF2™ FoO) = 225+ k]

No. of 10s 21 41 61 91 GF(2™) F(x) =X+ x4 X+ x° +1
IN(;‘IBI;)I Bonded 17 33 49 73 GF(EM] ]_.(‘” - x_mr,n} XM 1

No. of IOB 7 15 24 36 GF(2"™ F(x) = x4 x4 x°+ x* +1
Flipflops

No. of GCLKs 1 I 1 I e

Time (ns) 8.227 | 27.278 | 64.082 | 138.064 a0

g 120
T 100
= 50 ”
E i —4+— Affine Coordinates
5 50 —#— Projective Coordinates
= 0

20

i 0 5 10 15 20

Order m
Fig. 9. Affine Vs Projective Coordinates
(Time Consumption)

2000

1800

1600
E 1400
= 1200
£
£ 1000 - —4— Affine
= - Coordinates
= 800
é 600 ——Projective

Coordinates

5 Orderm!® 15 20

Fig. 10. Affine Vs Projective Coordinates
(Area Required)

Consequently, the increase in required area also
reduces when increasing the bit size. When considering
the bit sizes, NIST recommends ten finite fields, five of
which are binary fields, for use in the ECSDA. The binary
fields include GF(2™), GF(2*), GF(2*), GF(2") and
GF(2"") defined by the reduction polynomials
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Table 4. NIST Recommended Finite Fields

Device Time Taken (ns)

m=4 | m=8 m=12 m=18

XC3S1000-  6.483 | 58.092 | 100.067 | 170.415
FG456-4
XCV600E- | 5.783 | 55.794 | 94.740 | 177.465
FG900-8

XC2VP4- 3.506 | 27.222 | 45991 | 77.480
FG256-6
XC4VFXI12- 3.665| 24936 | 41.438 | 70.630

SF363-12

For each field a specific curve, along with a method
for generating a pseudo-random curve, are supplied.
These curves have been intentionally selected for both
cryptographic strength and efficientimplementation.

Such a recommendation has significant implications
on design choices made while implementing elliptic curve
cryptographic functions. In standardizing specific fields
for use in elliptic curve cryptography (ECC), NIST allows
ECC implementations to be heavily optimized for curves
over a single finite field. As a result, performance of the
algorithm can be maximized and resource utilization,
whether it be in code size for software or logic gates for
hardware, can be minimized.

Based on the NIST recommended binary fields and
the reason for that recommendations, the binary field
GF(2™) has been selected to perform the elliptic curve
operations. Then the Verilog coding for Lopez-Dahab
algorithm for point multiplication has been developed with
the binary field GF(2") and then it has been simulated by
using Modelsim XE 116.1e.

X. CONCLUSION AND FUTURE WORK

For ECC, point multiplication is the essential thing to
convert the given plain text in to the cipher text and then the
multiplier is considered to be the more resource and time
sensitive operation in the field. The multiplication process
can be carried with the projective coordinates by using the
Lopez-Dahab point multiplication algorithm to reduce the
number of inversions required. This is because, the direct
computation of the point additon and point doubling
according to the equations require five inversions for each
input point. Butin projective coordinates, it requires only two
inversions — one for x coordinate and another for y
coordinate.  Therefore, the time taken to perform the
inversions is reduced in projective coordinates when
compared to affine coordinates.

Also the pipelined ASIP results in better time
consumption with the considerable increase in area to
complete the entire process. The proposed architecture
has been implemented for the binary fields 4,8,12 and 18
and its results were shown clearly in the Table 4. In future,
itwill be implemented for the binary field 233. Further work
will continue to develop the better architecture by
increasing the pipeline stages for reducing the time
consumption as well as the area required.
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